线段的垂直平分线教案
- 相关推荐
作为一名优秀的教育工作者,时常需要用到教案,教案是教学活动的依据,有着重要的地位。那么应当如何写教案呢?下面是小编收集整理的线段的垂直平分线教案,欢迎大家借鉴与参考,希望对大家有所帮助。
线段的垂直平分线教案1
教学目标
1、经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力
2、能够证明线段垂直平分线的性质定理、判定定理及其相关结论
教学重点和难点
重点:线段的垂直平分线性质与逆定理及其的应用
难点:线段的垂直平分线的逆定理的理解和证明
教学方法观察实践法,分组讨论法,讲练结合法,自主探究法
教学手段多媒体课件
教学过程设计
一、从学生原有的认知结构提出问题
这节课,我们来研究线段的垂直平分线的尺规作图和性质。
二、师生共同研究形成概念
1、线段垂直平分线的性质
1)猜想:我们看看上面我们所作的线段的垂直平分线有什么性质?
引导学生自主发现线段垂直平分线的性质。
2)想一想书本P24上面
应先让学生自己思考证明的思路和方法,并尝试写出证明过程。
线段垂直平分线上的点到这条线段两个端点的距离相等
要证明一个图形上每一点都具有某种性质,只需要在图形上任取一点作代表。这一思想方法应让学生理解。
3)符号语言
∵P在线段AB的垂直平分线CD上
∴PA=PB
4)定理解释:
P为CD上的任意一点,只要P在CD上,总有PA=PB。
5)此定理应用于证明两条线段相等
2巩固练习
1)如图,已知直线AD是线段AB的垂直平分线,则AB=。
2)如图,AD是线段BC的垂直平分线,AB=5,BD=4,则AC=,CD=,AD=。
3)如图,在△ABC中,AB=AC,∠AED=50°,则∠B的度数为。
2、线段垂直平分线的逆定理
1)想一想书本P24想一想
教学引入
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
场景二:正方形的性质
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]
动画演示:
场景三:矩形的`性质
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]
动画演示:
场景四:菱形的性质
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
困为这个命题不是“如果……那么……”的形式,所以学生说出或写出它的逆命题时可能会有一定的困难帮助学生分析它的条件和结论,再写出其逆命题,最后应要求学生按证明的格式将证明过程书写出来。
2)猜想:我们说“线段垂直平分线上的点到这条线段两个端点的距离相等”,那么,到一条线段两个端点距离相等的点,在这条线段的垂直平分线上有什么性质?
引导学生自主发现线段垂直平分线的判定。
到一条线段两个端点距离相等的点,在这条线段的垂直平分线上
3)符号语言
∵PA=PB
∴P在线段AB的垂直平分线上
4)定理解释
只要有PA=PB,则P为CD上的任意一点
5)此定理应用于证明一点在某条线段的垂直平分线上
2巩固练习
1)已知点A和线段BC,且AB=AC,则点A在。
2)如果平面内的点C、D、E到线段AB的两端点的距离相等,则C、D、E均在线段AB的。
3)设是线段AB的垂直平分线,且CA=CB,则点C一定。
3、讲解例题
例1填空:
1、如图,在△ABC中,∠C=90°,DE是AB的垂直平分线。
1)则BD=;
2)若∠B=40°,则∠BAC=°,∠DAB=°,∠DAC=°,∠CDA=°;
3)若AC=4,BC=5,则DA+DC=,△ACD的周长为。
2、如图,△ABC中,AB=AC,∠A=40°,DE为AB的中垂线,则∠1=°,∠C=°,∠3=°,∠2=°;若△ABC的周长为16cm,BC=4cm,则AC=,△BCE的周长为。
例2如图,DE为△ABC的AB边的垂直平分线,D为垂足,DE交BC于E,AC=5,BC=8,求△AEC的周长。
分析:此题侧重于让学生体会解题过程,培养学生的逻辑思维。讲解时借助细绳,让学生更好地理解各线段之间的关系。
例3已知在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长是13cm,求△ABC的周长。
分析:此题与上例类似,在证明时,要多一步,要说明AC的长度。讲解时借助细绳,让学生更好地理解各线段之间的关系。
三、随堂练习
1、书本P26随堂练习1
2、《练习册》P6
3、如图,已知AB=AC=14cm,AB的垂直平分线交AC于D。
1)若△DBC的周长为24cm,则BC=cm;
2)若BC=8cm,则△BCD的周长是cm。
4、在△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是60cm和38cm,求AB、BC。
5、如图,在△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,AE=2cm,求△CDB的周长。
四、小结
线段的垂直平分线在计算、证明、作图中都有着重要作用。在前面学习中,有一些用三角形全等的知识来解决问题,现在可用线段垂直平分线的定理及其逆定理来解会更方便些。
五、作业
书本P27习题1.63
六、教学后记
更多精彩内容请点击:初中>初二>数学>初二数学教案
教学环节教学程序教学设想
一、创设情景,引入课题有一块平行四边形的玻璃块,假如不小心碰碎了一部分,聪明的技师拿着细绳很快将原来的平行四边形画了出来,你知道他用的是什么方法吗?
第一阶段感知阶段
材料是:给出生活实例
教法是:观察讨论
理由是:创设数学问题情景,产生认知冲突,快速吸引学生注意,立刻置学生于情景中问题里。
目的是:(1)让学生从真实的生活中发现数学;(2)激发学习兴趣,引导学生树立科学的人生观和价值观。
二、引发思考、提出议题(此环节可分为四步)
第一步“忆”——忆平行四边形的性质:
(1)从边看:两组对边分别平行
两组对边分别相等
(2)从角看:两组对角分别相等
四组邻角互补
(3)从对角线看:对角线互相平分
第二步“说”——说平行四边形性质的逆命题
(1)两组对边分别平行的四边形是平行四边形(定义)
(2)两组对边分别相等的四边形是平行四边形
(3)两组对角分别相等的四边形是平形四边形
(4)对角线互相平分的四边形是平行四边形
线段的垂直平分线教案2
教学内容:
教学目的:
1、使学生理解的性质定理及逆定理,掌握这两个定理的关系并会用这两个定理解决有关几何问题。
2、了解线段垂直平分线的轨迹问题。
3、结合教学内容培养学生的动作思维、形象思维和抽象思维能力。
教学重点:
性质定理及逆定理的引入证明及运用。
教学难点:
性质定理及逆定理的关系。
教学关键:
1、垂直平分线上所有的点和线段两端点的距离相等。
2、到线段两端点的距离相等的所有点都在这条上。
教具:投影仪及投影胶片。
教学过程:
一、提问
1、角平分线的性质定理及逆定理是什么?
2、怎样做一条?
二、新课
1、请同学们在课堂练习本上做线段AB的垂直平分线EF(请一名同学在黑板上做)。
2、在EF上任取一点P,连结PA、PB量出PA=?,PB=?引导学生观察这两个值有什么关系?
通过学生的观察、分析得出结果PA=PB,再取一点P'试一试仍然有P'A=P'B,引导学生猜想EF上的所有点和点A、点B的距离都相等,再请同学把这一结论叙述成命题(用幻灯展示)。
定理:上的点和这条线段的两个端点的'距离相等。
这个命题,是我们通过作图、观察、猜想得到的,还得在理论上加以证明是真命题才能做为定理。
已知:如图,直线EF⊥AB,垂足为C,且AC=CB,点P在EF上
求证:PA=PB
如何证明PA=PB学生分析得出只要证RTΔPCA≌RTΔPCB
证明:∵PC⊥AB(已知)
∴∠PCA=∠PCB(垂直的定义)
在ΔPCA和ΔPCB中
∴ΔPCA≌ΔPCB(SAS)
即:PA=PB(全等三角形的对应边相等)。
反过来,如果PA=PB,P1A=P1B,点P,P1在什么线上?
过P,P1做直线EF交AB于C,可证明ΔPAP1≌PBP1(SSS)
∴EF是等腰三角型ΔPAB的顶角平分线
∴EF是AB的垂直平分线(等腰三角形三线合一性质)
∴P,P1在AB的垂直平分线上,于是得出上述定理的逆定理(启发学生叙述)(用幻灯展示)。
逆定理:和一条线段两个端点距离相等的点,在这条上。
根据上述定理和逆定理可以知道:直线MN可以看作和两点A、B的距离相等的所有点的集合。
可以看作是和线段两个端点距离相等的所有点的集合。
三、举例(用幻灯展示)
例:已知,如图ΔABC中,边AB,BC的垂直平分线相交于点P,求证:PA=PB=PC。
证明:∵点P在线段AB的垂直平分线上
∴PA=PB
同理PB=PC
∴PA=PB=PC
由例题PA=PC知点P在AC的垂直平分线上,所以三角形三边的垂直平分线交于一点P,这点到三个顶点的距离相等。
四、小结
正确的运用这两个定理的关键是区别它们的条件与结论,加强证明前的分析,找出证明的途径。定理的作用是可证明两条线段相等或点在上。
五、练习与作业
练习:第87页1、2
作业:第95页2、3、4
线段的垂直平分线教案3
线段的垂直平分线(第二课时)
教学目标:
1.能够利用直尺和圆规作已知线段的垂直平分线;已知底边及底边上的高,能够利用直尺和圆规作出等腰三角形。知道为什么这样做图,提高熟练地使用直尺和圆规作图的技能。
2.通过探索、猜测、证明的过程,进一步拓展学生的推理证明意识和能力。
教学重点:作已知线段的垂直平分线。
教学难点:理解三线共点的证明方法。
教学过程:
引入:
剪一个三角形纸片,通过折叠找出每条边的垂直平分线,观察这三条垂直平分线,你发现了什么?当利用尺规作出三角形三条边的垂直平分线时,你是否也发现了同样的结论?
定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
证明:在△ABC中,设AB、BC的垂直平分线相交于点P,连接AP、BP、CP,
∵点P在线段AB的垂直平分线上
∴PA=PB(线段垂直平分线上的'点到这条线段两个端点距离相等)
同理:PB=PC
∴PA=PC
∴点P在AC的垂直平分线上
(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上)。
∴AB,BC,AC的垂直平分线相交于点P。
议一议:1、已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作几个?所作的三角形都全等吗?(这样的三角形能作出无数多个,它们不都全等)
2、已知等腰三角形底边及底边上的高,你能用尺规作出等腰三角形吗?能作几个?(满足条件的等腰三角形可和出两个,分加位于已知边的两侧,它们全等)。
做一做:
已知底边上的高,求作等腰三角形。
已知:线段a、b
求作:△ABC,使AB=AC,且BC=a,高AD=h
线段的垂直平分线教案4
线段的垂直平分线(第一课时)
教学目标:
1.要求学生掌握线段垂直平分线的性质定理及判定定理,能够利用这两个定理解决一些问题。
2.能够证明线段垂直平分线的性质定理及判定定理。
3.通过探索、猜测、证明的过程,进一步拓展学生的推理证明意识和能力。
教学重点:线段垂直平分线性质定理及其逆定理。
教学难点:线段垂直平分线的性质定理及其逆定理的内涵和证明。
教学过程:我们曾利用折纸的`办法得到:线段垂直平分线上的点到这条线段两个端点的距离睛等,你能证明这一结论吗?
一、线段垂直平分线上的点到这条线段两个端点的距离相等
1.让学生把准备好的方方正正的纸拿出来,按照下图的样子进行对折,并比较对折之后的折痕EB和E’B、FB和F’B的关系。
2.让学生说出他们观察猜测的结果是什么,肯定他们的发现,引导学生思考:这样一个结论是比较直观和明显的,我们可以说出两组边分别是相等的,但是,我们可以用观察说服别人吗?
3.给学生留出时间和空间思考如何把猜想变成事实。学生可以讨论交流不同的方法。提示学生在证明之前,要把文字语言变成数学语言,根据图形写出已知和求证。
定理:线段垂直平分线上的点到这条线段两个端点的距离相等。
已知:如图,直线MN⊥AB,垂足是C,且AC=BC,P是MN上的任意一点。
求证:PA=PB。
证明:∵MN⊥AB,
∴∠PCA=∠PCB=90°
∵AC=BC,PC=PC
∴△PCA≌△PCB(SAS)
∴PA=PB(全等三角形的对应边相等)
想一想,你能写出上面这个定理的逆合题吗?
它是真命题吗?如果是请证明.
线段的垂直平分线教案5
一.教学时间
xxxx年12月10日
二.教学班级:初二(6)班
三.教学目的
1.给学生复习线段垂直平分线的定义和作法。
2.给学生复习点与点之间的距离,是指线段的长而不是线段。
3.教会学生线段垂直平分线的定理和逆定理的推导方法。
4.让学生充分理解线段垂直平分线的定理和逆定理并能熟练背诵。
5.通过多种练习,让学生学会熟练运用线段垂直平分线的定理和逆定理。
6.让学生明确线段垂直平分线的联系与区别。
过程与方法(流程图)
(1)提出问题(2)讨论问题(3)解决问题
情感态度价值观
1.通过对旧知识的回顾和运用,让学生明白,平时应经常复习和巩固旧知识,做到温故而知新.
2.在学生得出结论的同时让学生证明,可以让他们明白任何结论都必须有科学依据,又激发了学生的求知欲和探究欲.
3.让学生自己用语言来描述定理和逆定理时,检验了他们的语言表达能力,使他们明白学科之间是相通的.
4.在整个学习过程中,学生会深刻体会团体合作的重要性和竞争的快乐.
四.教学过程
(一).画线段AB,画AB的垂直平分线MN,MN上任意取一点P,连结PA、PB,则PA、PB的.长是点P和AB两个端点A点和B点的距离。
教师提问:PA、PB在长度上有怎样的关系?怎样证明?
学生回答:PA=PB
已知:MN是AB的垂直平分线
求证:PA=PB
证明:∵MN是AB的垂直平分线(已知)
∴∠PCA=∠PCB=90?
AC=BC(垂直平分线的定义)
在△PCA和△PCB中
AC=BC(已证)
∠PCA=∠PCB(已证)
PC=PC(公共边)
∴△PCA≌△PCB(S.A.S)
∴PA=PB(全等三角形的对应边相等)
定理:
线段垂直平分线上的点和这条线段两个端点的距离相等.
∵MN是AB的垂直平分线
∴PA=PB
(二).画线段AB和点Q,连结QA、QB,使QA=QB。
教师提问:点Q在怎样的一条线上?
学生回答:AB的垂直平分线上
已知:QA=QB
求证:Q在AB的垂直平分线上
证明:
过Q作直线MN⊥AB
,垂足为C
∵QA=QB(已知)
∴AC=BC(等腰三角形的三线合一)
∴MN是AB的垂直平分线(垂直平分线的定义)
∴Q在AB的垂直平分线上
逆定理:
和一条线段两个端点距离相等的点在这条线段的垂直平分线上
∵QA=QB
∴Q在AB的垂直平分线上
(三).试一试
1.如图,在△ABC中,∠C=90?,MN是AB的中垂线.
(1)如果MB=10cm,那么MA=_______.
(2)如果∠A=35?,那么∠1=
(3)如果△MCB的周长为30cm,那么AC+BC=_______.
2.如图,△ABC中,∠C=90?,D为AB的中点,D在线段_________的垂直平分线上。
(四).例1.已知:在△ABC中,ON是AB的垂直平分线,OA=OC.
求证:点O在BC的垂直平分线上.
证明:连结BO
∵ON是AB的垂直平分线(已知)
∴OA=OB(线段的垂直平分线上的点和这条线段的两个端点的距离相等)
∵OA=OC(已知)
∴OB=OC(等量代换)
∴点O在BC的垂直平分线上(和一条线段的两个端点的距离相等的点,在这条线段的线段的垂直平分线上)
(五).练习
1.作图
(1)在直线MN上找出一点P,使PA=PB.
(2)找一点P,使它到A`B`C三点的距离相等.
∴点P就是所要求作的点.
2.已知:如图,D是BC延长线上的一点,BD=BC+AC
求证:点C在AD的垂直平分线上.
3.已知:∠C=90?,AB的垂直平分线分别交AC`AB于M`N,AM=2CM。
求证:∠A=30
线段的垂直平分线教案6
1、教材分析
(1)知识结构
(2)重点、难点分析
本节内容的重点是线段垂直平分线定理及其逆定理. 定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.
本节内容的难点是定理及逆定理的关系. 垂直平分线定理和其逆定理,题设与结论正好相反. 学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.
2、 教法建议
本节课教学模式主要采用“学生主体性学习”的`教学模式. 提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳. 教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人. 具体说明如下:
(1)参与探索发现,领略知识形成过程
学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”. 然后学生完成证明,找一名学生的证明过程,进行投影总结. 最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理. 这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.
(2)采用“类比”的学习方法,获取逆定理
线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.
(3) 通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.
【线段的垂直平分线教案】相关文章:
教案06-18
大班教案科学教案12-01
大班教案橡皮泥教案07-11
《荷花》教案12-26
舞蹈的教案10-24
《瀑布》教案12-12
《散步》教案07-30
《变废为宝》教案09-17
《绝句》教案11-11
散步的教案09-26